From: Romero Aguero, Julio E. (Chief Inno. and Transformation Officer) romeje@jea.com
Sent: Wednesday, May 8, 2019 5:08 PM
To: Dykes, Melissa H. - President/COO dykemh@jea.com
Cc: Sarah Brody Sarah_Brody@mckinsey.com
Subject: [EXT]SQ1 assumptions

FYI

Julio Romero Agüero, PhD, MBA
Chief Innovation and Transformation Officer
JEA
21 West Church Street
Jacksonville, Florida 32202-3139
Phone (904) 665-8898
Fax (904) 665-4238
Cell (919) 208-4885
Email romeje@jea.com
©OOO JEA.
Florida has a very broad Public Records Law. Virtually all written communications to or from State and Local Officials and employees are public records available to the public and media upon request. Any email sent to or from JEA's system may be considered a public record and subject to disclosure under Florida's Public Records Laws. Any information deemed confidential and exempt from Florida's Public Records Laws should be clearly marked. Under Florida law, e-mail addresses are public records. If you do not want your e-mail address released in response to a public-records request, do not send electronic mail to this entity. Instead, contact JEA by phone or in writing.

This email is confidential and may be privileged. If you have received it in error, please notify us immediately and then delete it. Please do not copy it, disclose its contents or use it for any purpose.

Status Quo Baseline - Assumptions review

Disclaimer

The following "Status Quo Baseline" financial projections are presented solely for JEA Board of Directors planning and action in connection with the development of a strategic plan. They are not a projection of future financial performance and, as such, should not be relied upon by present or prospective JEA bond investors to purchase or sell any security or to make an investment decision. The projections are a mathematical representation of a status quo business case and do not reflect numerous likely future events and future JEA actions that will likely cause actual results to differ materially from this business case. The presentation should be viewed in its entirety with individual slides or sections of the presentation having no greater or reduced significance relative to other slides or sections of the presentation

Goals for today

- Review goals of status quo baseline presentation
- Review assumptions underlying status quo projections and initial results
- Discuss communication to Board

Assumptions and key financial outputs

Summary: the status quo is a result of sales and cost drivers and trends, with assumption that JEA takes no action outside business as usual
Energy

Sales drivers and trends

- Customer growth: growing with strong economic forecast
- Energy efficiency: continued reduction in sales
- Distributed generation: begins to drive reduction in sales
- Electric vehicles: minor growth in sales
- Customer growth: growing with strong economic forecast
- Water efficiency: continued reduction in sales

Cost drivers and trends

- O\&M: growing in line with historical trends
- Capex: steady throughout period, one major investment (Greenland)
- Debt: early debt retirement (STAR plan)
" O\&M: growing in line with historical trends
- Capex: growth, especially through 2025
- Debt: early debt retirement (STAR plan)

Energy Sales

DG (non-solar)
(5) Electric vehicles (EV)

Energy Costs

	Key metric	Assumptions	Source / rationale
(6) O\&M	O\&M escalator (\%)	7\% CAGR 2018-20 4\% CAGR 2021-30	2019-20 based on current budget / forecasted spend 2021 onwards based on historical growth by category, adjusted for known anomalies
Base rate	Base rate (inclusive of fuel) in 2019 ($\$ / \mathrm{kWh}$)	\$. 103 in 2019	Baseline (current projection) assumptions
(7) Capital costs	Average capital expense (\$M)	Average annual spend 2019-2025: \$193M Average annual spend 2026-2030: \$184M	Based on Capital Budget Planning project list; future average excludes generation
	New capacity (\$M)	New capacity (Greenland combined cycle) (\$532M spend 2021-2025)	Costs based on IRP base case assumptions
Debt	New debt (\$M)	Assumes STAR plan of early debt retirements of \$413M (from 2019 2022). Greenland is debt financed in all scenarios	Based on stated STAR plan

Water Sales \& Costs

	Key metric	2019	$\begin{aligned} & \text { CAGR } \\ & \text { 2019-2030 } \end{aligned}$	2030	Source / rationale
(8) Customer growth	Water sales from customer growth (mn kgal / year)	35.8	1.3\%	42.2	SPLASH model growth forecast based on BBER projections
	Reclaimed sales from customer growth (mn kgal / year)	3.5	5.7\%	6.9	Higher rates in reclaimed service territory
	Sewer sales from customer growth (mn kgal / year)	26.9	1.3\%	31.7	Same rate as water growth
(9) Efficiency	Residential consumption ${ }^{2}$ ($\mathrm{kGal} /$ customer / yr)	74	-0.8\%	67	Efficiency based on forecasted adoption of appliances
	Commercial \& industrial consumption (kGal/yr)	650	-0.9\%	582	Efficiency based on forecasted adoption of appliances
	Outdoor usage	No reduction			Assuming no behavioral change; no natural adoption of efficient technology
10 O\&M	O\&M escalator (\%)	4\% CAGR 2018-205\% CAGR 2021-30			2019-20 based on current budget / forecasted spend 2021 onwards based on historical growth by category, adjusted for known anomalies
Base rate	Base rate in 2019 (\$/kGal)	Water: \$4.65 / Sewer: \$9.16 / Reclaim: \$4.47			Calculation based on yield per product
11 Capital costs	2019-2024 expenditures	Average \$242M annual spend			Based on Capital Budget Planning project list (additional reclaimed water projects added)
	2025-2030 expenditures	Average \$207M annual spend; based on extension of 2019-24 capacity and $R \& R$ spend, with additional supply projects included totalling \$187M			Based on Capital Budget Planning project list (additional reclaimed water projects added)
Debt	New debt (\$M)	Assumes STAR plan of early debt retirements of \$140M (in 2019), additional borrowing of \$333M			Based on stated STAR plan, revised capex plan

Energy sales forecast: Energy efficiency and solar will drive down JEA's sales by 8% through 2030 despite a growing customer base

2030 JEA projected energy sales, TWh

[Slide 9]
Anticipating 3.5\% penetration in Jacksonville by 2030

Water sales will see continued growth driven by population and tempered by continued adoption of water-efficient appliances

[^0]Additional financial assumptions used to develop energy and water status
quo baseline scenarios

HAS NOT BEEN UPDATED TO LATEST O\&M ASSUMPTIONS

Financial assumption	Energy	Water	Note: assuming no rate increases, no additional debt, and funding of the city contribution through 2030 results in a cumulative cash flow gap of - \$2.4B for energy - \$.8B for water
Use rate increases to meet cash flow gap	YES	NO	
Raise additional debt to meet cash flow gap	NO (with exception of debt funding for Greenland)	YES	
Fund city contribution post 2023	NO	YES	

Energy financial dashboard

	Metric	2019	2025	2030	CAGR	Notes
Rates	Residential bill ${ }^{1}$, (\$/month)	\$137.18	\$137.18	\$148.65	1.7\%	Current Florida median is $\$ 125$
Cash flow	Operating free cash flow,	\$554	\$396	\$378	-3.4\%	
	Capital expenditures,	(\$275)	(\$322)	(\$179)	-3.8\%	2025 capex driven in part by Greenland
	Funds available, $\$ M^{2}$	\$279	\$75	\$199	-3.0\%	
	New debt, \$ M	\$0	\$63	\$0		
	Debt service, \$ M	(\$229)	(\$131)	(\$208)		Does not allow for city contribution
Balance sheet	Net funded debt, \$M	\$1,943	\$1,833	\$1,302	-3.6\%	
	Debt to capital ratio,	60\%	59\%	53\%	-	Current target is 50\%

Water financial dashboard

	Metric	2019	2025	2030	CAGR	Notes
Rates	Residential bill ${ }^{1}$, (\$/month)	\$70.45	\$70.45	\$70.45	0.0\%	Current Florida median is $\$ 77$
Cash flow	Operating free cash flow,	\$347	\$304	\$281	-1.9\%	
	Capital expenditures,	(\$220)	(\$205)	(\$216)	-0.2\%	Capex remains high through projection
	Funds available, $\$ M^{2}$	\$128	\$99	\$65	-6.0\%	
	New debt, \$ M	\$0	\$49	\$84		
	Debt service, \$ M	(\$108)	(\$116)	(\$126)		Allows for city contrib. after borrowing
Balance sheet	Net funded debt, \$M	\$1,217	\$1,279	\$1,272	0.4\%	Total debt increases by 5\% (\$50m) 2019-2030
	Debt to capital ratio,	41\%	38\%	37\%	-	Current target is 50\%

Supplemental assumptions

(1) Customer growth likely to continue in the foreseeable future

Duval County Specific economic indicators
(Indexed to 2000)

- Customer growth projections considers the U.S. Census Bureau (BOC): Population Estimates, Projections; Moody's Analytics Estimates and Forecasts for Duval County
- Residential customer growth is calculated based on projections for population (primary factor) and median household income (secondary factor)
- Commercial and industrial customer growth is calculated based on GDP projections
- For Duval County through 2030, Moody's Analytics projects GDP and median household income growth to outpace previous decade and outpace US average
- Primary driver of Moody's economics projections is increase in finance and insurance jobs (in US overall and in Jacksonville particularly), with wages $\sim 50 \%$ higher than current local average
[Slide 15]
Separate res and commerciallnclude kwh and customer growth assumptionsRate increase percentage

(2) Energy efficiency momentum is the largest driver of energy sales reductions, consistent with US utility trends

2 Natural EE improvements with new products will drive up EE; consumer choices regarding new water and space heating technologies can have outsize impact on efficiency

- Appliance efficiency: JEA average customer energy star rating may indicate room for continued residential update
- New house characteristics: continued increase in gas connections in new homes could lower energy use ~ $20-30 \%$ per customer; however increased size of new homes could increase energy use

2 National residential trends highlight declining use per capita after peaking in 2010

U.S. annual residential electricity sales, Trillion kilowatt-hours

Residential electricity sales per capita, kilowatt-hours per persons

- Per-capita sales have declined since 2010, a trend which is forecast to continue
- These widespread efficiency gains are expected to drive further declines, even as electrification (e.g., of vehicles) increased demand

(3) Customer needs will drive choice of DG system

	\% of total sales	Customer characteristics	Considerations for DG	DG system modelled
Residential	44	- Typical energy use: $1,000 \mathrm{kWh} /$ month - 69% single family homes - 31% of homes built after 2000 (vs. 19\% in US)	- Will consider solar DG once economic - Typically generate more energy than consumed; storage needed to derive full value from solar - Value attributed to backup power provided by storage	Solar plus storage
Commercial	33	- Average peak demand $<1000 \mathrm{~kW}$ - Peak demand typically occurs midday - Largest customers include retail chain operators and campuses	- Will consider solar DG once economic, with short payback period - Will consider third-party installation in exchange for reduced electricity costs - Energy needs typically too large for solar to fully offset; storage consideration typically separate	
Industrial	22	- Average peak demand > 1000 kW - Peak demand varies - Largest customers include factories and hospitals	- Will consider solar DG once economic, with short payback period; lower electric rates make solar economics poorer ${ }^{1}$ - CHP may be economical for some customers with opportunity to increase operational efficiency (e.g., coincident heat and power loads) - Customers are unlikely to build out full DG for resilience	

3 Solar adoption rates accelerate as economics improve for stakeholders

New residential solar + storage customers, \# of customers

- Uptake is expected to increase as economics become viable for various stakeholders (e.g., system owners, developers)
- Rates of adoption are also expected to increase as parties become familiar with markets and are able to achieve better economics (e.g., lower risk, lower cost, potential for higher electricity prices)
- These trends will continue beyond the forecast period as some features become standard parts of upgrades and new homes (e.g., solar rooftops, mandated solar for new homes in California
(3) Residential DG is attractive for homeowners whereas commercial is attractive for 3rd party developers
(3) Countrywide trends provide indication of potential uptake after Jacksonville residential/C\&l solar pricing reaches parity
(4) CHP economics for a generalized JEA industrial customer are not compelling, consistent with recent US installation history
(5) 30k EVs expected in in JEAs territory by 2030 based on EV modeling and penetration today

6 Energy opex breakdown and assumptions

(7) Energy capex breakdown and assumptions

7 Breakdown of known capex spend: capacity

Electric Other - Capacity, top expenditures (\$M)

0	0	0	0	0	0	0	0	0	0	0
2019	20	21	22	23	24	25	26	27	28	2029

Expanded Generation - Capacity, top expenditures (\$M)
Smaller projects

Electric Distribution - Capacity, top expenditures (\$M)COM - New Electric Service Additions \square COM - Development Driven Projects - E

Electric System Substation 7 Transmission - Capacity, top expenditures (\$M)

\square Dinsmore $230-26 \mathrm{kV}$ Substation	Mayo Clinic 230-26kV Substation
\square College Substation Reconfiguration	
\square	Eagle 138-13.8 kV Substation
\square Nocatee 230-26 kV Substation	

 mojections are merely a mathematical representation of a hy
7 Breakdown of known capex spend: R\&R

Electric Other - R\&R, top expenditures (\$M) ${ }^{1}$

Electric System Generation - R\&R, top expenditures (\$M)

Electric Distribution - R\&R, top expenditures (\$M)

Electric Substation and Transmission - R\&R, top expenditures (\$M)

9 In the absence of action taken by JEA, water efficiency gains will continue to take place through replacement of indoor appliances

-
- Old

Main drivers

Dishwashers	$\begin{array}{l}\text { Old }=14 \mathrm{gpc} \\ \text { Efficient }=6.5 \text { (standard) } / 4.5 \text { (compact) gpc } \\ \text { V. Efficient }=5.8 \text { (standard) } / 4.0 \text { (compact) gpc } \\ \text { New efficiency standard effective in } 2010\end{array}$
Additional	$\begin{array}{l}\text { Outdoor remains constant } \\ \text { Leak declines with tech and new home adoption }\end{array}$

Old $=3.5 \mathrm{gpf}$
Efficient $=1.6 \mathrm{gpf}$
V. Efficient = 1.28 gp

New efficiency standard effective in 1994

Old $=41 \mathrm{gpl}$
Efficient $=22.4 \mathrm{gpl}$
New efficiency standard effective in 2011

Old $=2.75 \mathrm{gpm}$
Efficient $=2.5 \mathrm{gpm}$
V. Efficient $=2$ (shower) $/ 1.5$ (faucet) gpm New efficiency standards effective in 1994

Appliance mix New standard (efficient)

9 Drivers of water savings

10 Water opex breakdown and assumptions

(11) Water capex breakdown

Yearly water capex, \$M

(11) Water capex breakdown and assumptions

Category	2019-24 assumptions	2025-2030 assumptions
Renewal and replacement	Project list categorized previously by Capital Budget Planning	Average yearly spend for 2019-24 assumed for all years
Growth / new connections wastewater treatment	Major expansions (Greenland, Southwest, Nassau)	No additional wastewater treatment expansion assumed needed
Growth / new connections collection, transmission, pump	Project list categorized by Capital Budget Planning	Average yearly spend for 2019-24 assumed for all years
New supply - reclaim (including storage, new connections)	Project list categorized by capital budget planning	Project list from Planning added to forecast
New supply - purification, pipelines, wells, other	TWMP, Rivertown, Nocatee South Water Repump; purified water phase 2 (\$18/gal; 1MGD, FY20-22)	Purified water project (phase $3=10$ MGD (FY25-30), \$200M); ${ }^{\text {rd }}$ River Crossing - \$75M (FY30-34)
Resiliency and reliability	Previously categorized by CBP	Average yearly spend for 2019-24 assumed for all years
Environmental quality / water quality	Highlands Alternative Treatment project	Buckman BNR phase 2
Biosolids and other	Buckman biosolids conversion upgrades and replacements	Buckman biosolids conversion upgrades and replacements

Total 2019-2030 spend, $\$ \mathrm{M}, \%$ of total

1,293		48\%
279 10\%		
199		7\%
205		8\%
327		12\%
325		12\%
32		1\%
53		2\%
2,713		

11 Post 2030 water capex needs

Average annual water capex budget,
\$M

Major system priorities

- Phase-out septic tanks in Duval County
- Proactively address supply challenges on South Grid challenges ${ }^{2}$

Growth and quality ${ }^{3}$

Maintenance and resiliency ${ }^{4}$

[^0]: 1 No change as water efficiency applies to indoor use water

